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FV3 is unique among atmospheric dynamical cores in that it is formulated similarly to CFD 
solvers which treat most processes as the fluxes of some conserved quantity. With the 
exception of the pressure gradient force, all of the terms in the inviscid Euler equations, 
formulated along Lagrangian surfaces, can be expressed as fluxes. The fluxes are evaluated 
through the Lin & Rood (1996) FV advection scheme, extended to the cubed sphere by Putman 
and Lin (2007), based on a two-dimensional combination of one-dimensional flux operators. The 
operators in the most recent version of FV3 all use the piecewise-parabolic method (Collella and 
Woodward 1984), although this method gives great flexibility in choosing the subgrid 
reconstructions used to evaluate the fluxes. 
 
Some understanding of finite-volume methods is necessary to understand the operators. A true 
finite-volume method treats all variables as cell-mean values, instead of point values. (Fluxes 
and winds are treated as face-mean values.) To compute the fluxes, a reconstruction function 
describing an approximation to the (unknown) subgrid distribution of each variable is needed. In 
PPM, this reconstruction is a quadratic function, specified by the cell mean value and the values 
on the interfaces of the cells. The cell-interface values are derived by computing a high-order 
interpolation from the cell-mean values to point values on the interfaces. The reconstructions 
can then be altered by various means to enforce different shape preservation properties, such 
as monotonicity or positivity, by looking at the cell-mean and cell-interface values of the 
surrounding cells. This process, called limiting is a non-linear method, allowing us to create a 
high-order monotone solution without violating Godunov’s Theorem. (This should not be 
confused with flux-corrected transport, or FCT, a simpler means of enforcing monotonicity)  
 
Monotonicity means that the reconstructions are chosen to ensure that no new extrema appear 
in the variable, in the absence of flow convergence or divergence. This is a property of scalar 
advection in real flows, and prevents the appearance of unphysical oscillations, or over- and 
under-shoots (which can create spurious condensates or unphysically rapid chemical reactions). 
Monotonicity also prevents the appearance of negative values in positive-definite mass scalars, 
which can rapidly lead to numerical instability. However, the stronger the enforcement of 
monotonicity, the more diffusive the solution is, so other techniques, such as schemes which 
only enforce positivity, or simple reconstruction filters. 
 
Here we briefly describe three PPM operators, all formally the same fourth-order accuracy but 
with different reconstruction limiters: An unlimited (also called linear) “fifth-order” operator (hord 
= 5), an unlimited operator with a 2dx filter (hord = 6), and the monotone Lin 2004 operator 
(hord = 8). We also describe the optional positive-definite limiter which can be applied to 
methods 5 and 6, which is essential for scalar advection (hord_tr). The number indicated by 
hord is only the selection amongst a series of schemes, similar to how different numbers in 



the physics correspond to different schemes. They do not change the order of accuracy of 
the advection, only the diffusivity and shape-preserving characteristics. 
 
Hord = 5 is the “linear” or “unlimited” scheme originally devised by Collella and Woodward, 
modified with a weak 2dx filter: if the cell-interface values show a 2dx signal (that is, that the 
interpolated interface values on opposing sides of a cell switch between greater than and less 
than the cell-mean value) the flux is evaluated as a first-order upwind value. The 2dx filter is 
necessary to suppress 2dx noise; without this filter the solver is more prone to instability. Hord = 
6 uses a much stronger 2dx filter: the hord = 5 method is extended by reverting to first-order 
upwind flux if the difference in cell-interface values exceeds the mean of the two interface 
values by a tunable threshold (1.5x by default). 
 
The optional positive-definite limiter is activated by adding a minus sign to hord (for values <= 
6). This forces all cell-interface values to be no more than 0, ensuring a positive-definite flux. 
The positive-definite hord = 5 further applies the positive-definite constraint of Lin and Rood 
(1996). 


